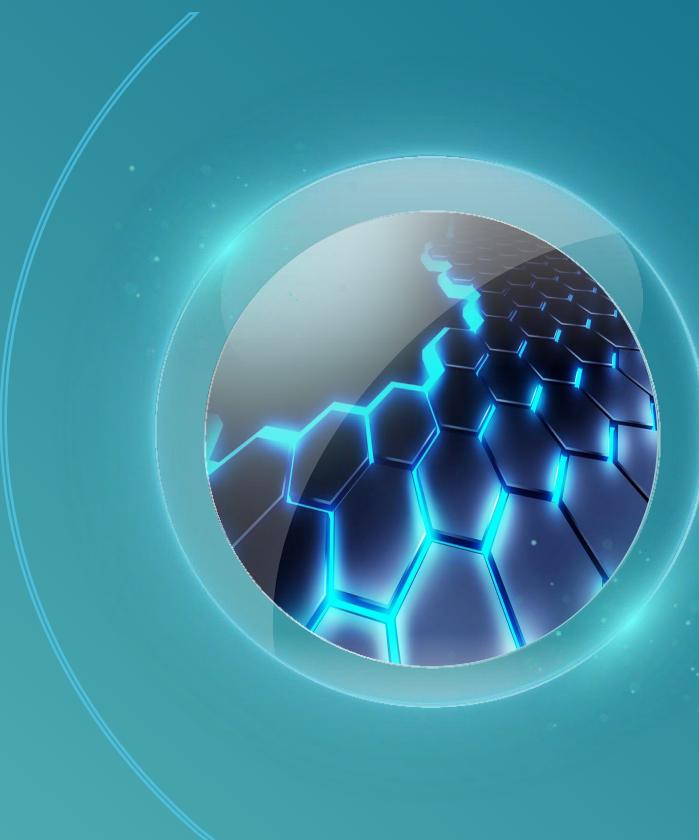
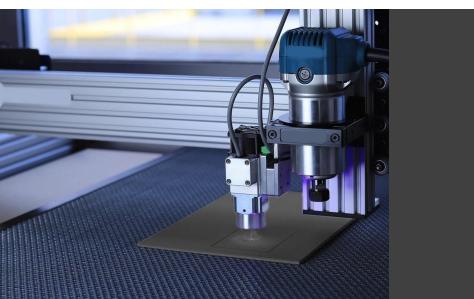


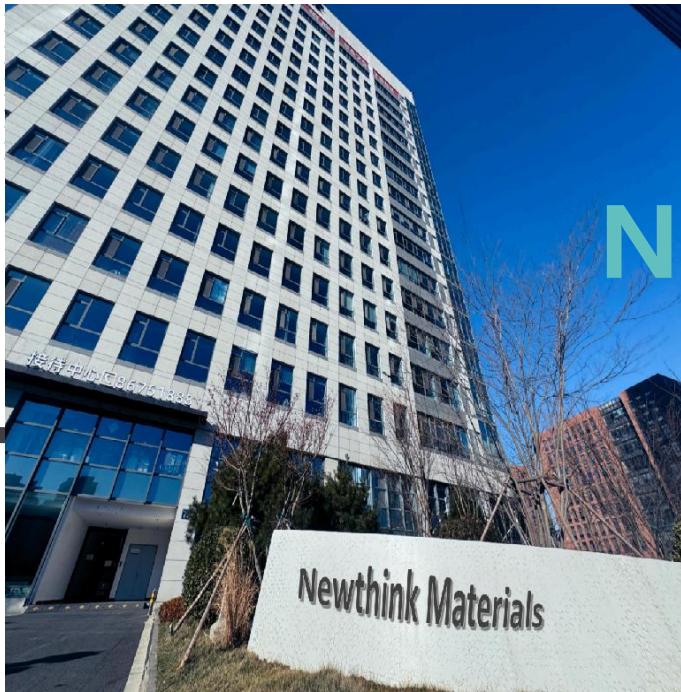
Professional Advanced Ceramics Manufacturer
- Global Solutions for Extreme Industries


Qingdao Newthink New Materials Co., Ltd.


**Precision
Ceramics
Manufacturer**

NKM
ADVANCED
CERAMICS
CERAMICS

Catalogue


02 | **About us**

03 | **Industries We Serve**

04-17 | **Advanced Ceramic Products**

18 -19 | **Our Strengths & Reliability**

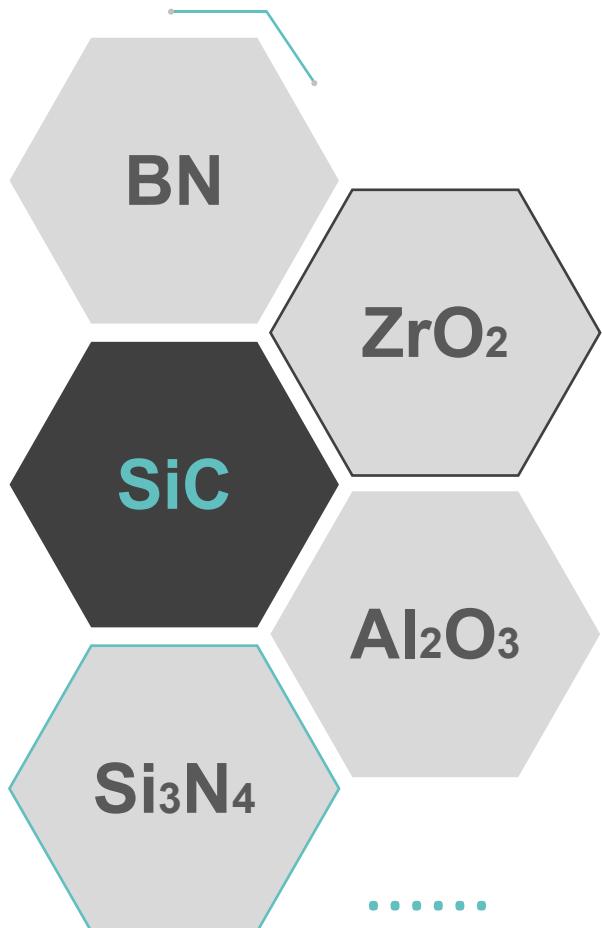
About us

Newthink new Materials

DEDICATED TO
ENHANCING YOUR INDUSTRIAL EFFICIENCY

Qingdao Newthink New Materials Co., Ltd., founded in 2011, is a leading Chinese provider of advanced ceramic solutions, operating ISO-certified facilities and serving clients in over 40 countries. With 200+ employees and 70+ precision units, we've delivered 3,000+ ceramic product types globally. Our high-performance materials—including silicon carbide, alumina, boron nitride and more—support industries like semiconductors, aerospace, and medical in meeting stringent manufacturing demands. We offer:

- High-Quality Products
- Competitive Pricing
- Dependable Delivery
- Strict Dimensional Tolerance Compliance
- Customized Solutions
- Product Confidentiality
- Rapid Response


Advanced Ceramic Solutions Across Global Sectors

We support industries worldwide—including military, semiconductors, kilns, and high-temperature sectors—with reliable and innovative ceramic technologies.

Advanced Ceramic Products

Our Ceramic Product Range

NKM offers a wide portfolio of advanced ceramics, including SiC, alumina, zirconia, BN, and Si₃N₄. Our products are engineered for strength, heat resistance, and wear protection across industries from semiconductors and kilns to mining, defense, aerospace, automotive, energy, and other high-demand sectors worldwide.

Ceramic Product Processing Flow

Raw Material Preparation

Powder selection, additives, crushing, sieving, mixing

Drying

Moisture or solvent removal to prevent cracking and deformation

Sintering

- Conventional Sintering
- Pressureless Sintering
- Reaction Bonded Sintering
- Hot Isostatic Pressing (HIP)
- CVD / PVD Coating Sintering

Quality Control & Testing

Dimensional inspection, density testing, strength testing, microscopic examination, thermal performance testing

Packaging & Delivery

Protective packaging, labeling & traceability, export-proofing against shock and moisture

Forming

- Dry Pressing
- Cold Isostatic Pressing (CIP)
- Slip Casting
- Extrusion
- Ceramic Injection Molding (CIM)
- Hot Pressing
- Gel Casting
- Additive Manufacturing

Rough Machining / Pre-Machining

Basic cutting or shaping to prepare green bodies for sintering

Machining & Surface Treatment

Cutting, turning, grinding, polishing, laser/ultrasonic machining, coating, impregnation, etc.

Final Inspection

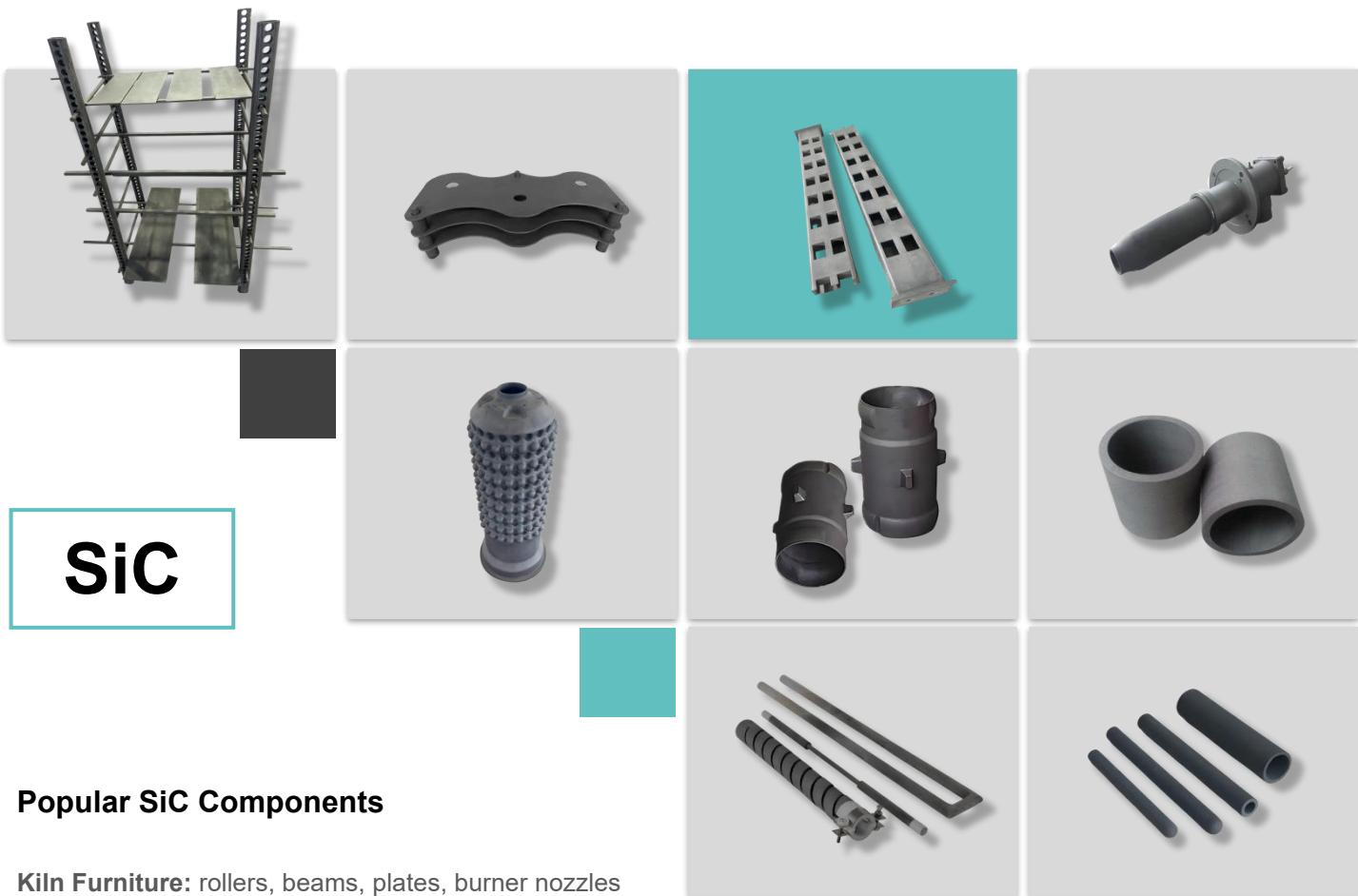
Appearance check, performance sampling inspection

Silicon Carbide (SiC) Ceramic

Silicon carbide is a high-performance ceramic material known for its exceptional hardness, strength, and stability. With superior resistance to heat, wear, and corrosion, SiC has become the material of choice in demanding industrial applications.

Key Properties >

- High hardness and strength
- Excellent wear resistance and self-lubricating behavior
- High thermal conductivity and low thermal expansion
- Outstanding thermal shock resistance
- Superior chemical inertness, acid and alkali resistance
- Excellent performance under high temperature up to 1600°C


Applications Across Industries

Steel & Metallurgy | Power & Energy |
Metal Smelting | Mining & Mineral
Processing | Semiconductor &
Photovoltaic | Chemical Industry |
Military & Defense

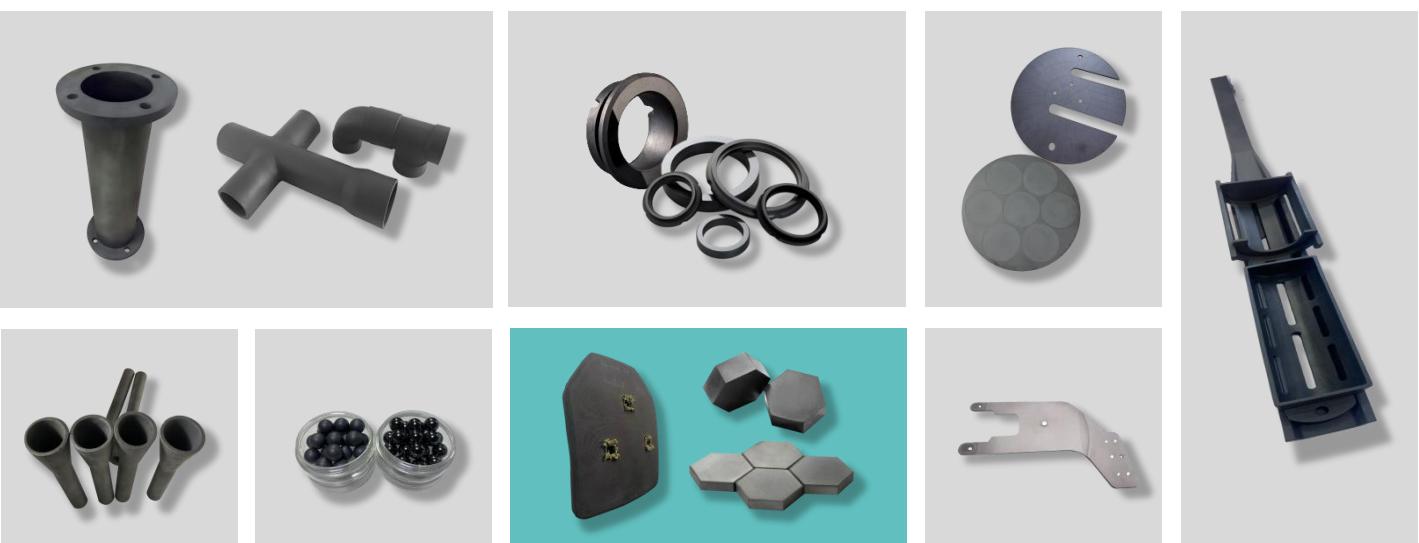
Key Parameters >

Item	Unit	Data				
		RBSiC(SiSiC)	NBSiC	SSiC	RSiC	OSiC
Max service temperature	°C	1380	1450	1650	1620	1400
Density	g/cm³	3.02	2.75-2.85	3.08-3.16	2.65-2.75	2.75-2.85
Open porosity	%	0	13-15	0	15-18	7-8
Bending strength 20°C	Mpa	250	160	380	100	/
Bending strength 1200°C	Mpa	280	180	400	120	/
Modulus of elasticity 20°C	Gpa	330	580	420	240	/
Modulus of elasticity 1200°C	Gpa	300	/	/	200	/
Thermal conductivity 1200°C	W/m.k	45	19.6	100-120	36.6	/
Coefficient of thermal expansion	K⁻¹x10⁻⁶	4.5	4.7	4.1	4.69	/
HV	kg/mm²	2115	/	2800	/	/

SiC

Popular SiC Components

Kiln Furniture: rollers, beams, plates, burner nozzles


High-Temperature Applications: heat exchanger tubes, radiant tubes, heater rods, thermocouple protection tubes, crucibles

Wear-Resistant Applications: liners, sandblasting nozzles, grinding barrels

Military & Ballistic Protection: bulletproof plates, vehicle armor

Semiconductors: wafer chucks, susceptors, structural parts, handling end-effectors, wafer boats

Mechanical Seals: seal rings, sleeves, bearings

Zirconia (ZrO_2) Ceramic

Zirconia ceramics are advanced materials recognized for their exceptional strength, toughness, and durability. With superior resistance to wear, heat, and corrosion, zirconia components ensure reliable performance across a wide range of demanding industrial applications.

Applications Across Industries

Mechanical Engineering | Valves & Pumps | Grinding & Polishing Media | Electronics & Semiconductors | Energy & Chemical Industries | Aerospace & Defense | New Energy & Battery Processing

Key Parameters >

Category	Parameter	Typical Value	Unit
Physical Properties	Density	6.00 - 6.05	g/cm^3
	Water Absorption	0	%
	Grain Size	0.3 - 0.8	μm
Mechanical Properties	Flexural Strength	900 - 1400	MPa
	Compressive Strength	2000 - 2500	MPa
	Fracture Toughness	6 - 12	$\text{MPa}\cdot\text{m}^{1/2}$
	Vickers Hardness	1200 - 1400	HV
	Elastic Modulus	200 - 220	GPa
Thermal Properties	Max Operating Temp	800 - 1000	$^{\circ}\text{C}$ (short-term)
	Thermal Expansion Coefficient	10.5	$\times 10^{-6}/^{\circ}\text{C}$
	Thermal Conductivity	2 - 3	$\text{W}/(\text{m}\cdot\text{K})$
	Thermal Shock Resistance	250 - 300	$^{\circ}\text{C}$
Chemical Properties	Acid Resistance	< 0.01	mm/year
	Alkali Resistance	Almost no erosion	-
Electrical Properties	Volume Resistivity	$> 10^{14}$	$\Omega\cdot\text{cm}$
	Dielectric Constant	28 - 33	1 MHz
Machining Properties	Dimensional Tolerance	± 0.005	mm (fine grinding)
	Surface Roughness	≤ 0.01	μm

Key Properties >

- High strength and fracture toughness
- Excellent wear resistance and hardness
- High temperature resistance up to 1000 °C
- Low thermal conductivity and good thermal insulation
- Chemical stability and corrosion resistance
- Electrical insulation at room temperature, ionic conductivity at high temperature
- Non-magnetic characteristics

ZrO_2

Popular Zirconia Components

Powder, beads, balls, crucibles, bearings, plates, bushings, plungers, nozzles

Boron Nitride (BN) Ceramic

Boron Nitride (BN) is a high-performance ceramic material known for its exceptional thermal conductivity, electrical insulation, and chemical stability. With unique structures such as hexagonal BN (h-BN) and cubic BN (c-BN), it has become indispensable in advanced industrial applications.

Key Properties >

- High thermal conductivity
- Excellent electrical insulation, low dielectric constant
- Outstanding high-temperature resistance, stable up to 2300 °C in inert atmosphere
- Chemical inertness against strong acids, bases, and molten metals
- Low thermal expansion and strong thermal shock resistance
- Wide hardness range: soft h-BN to ultra-hard c-BN

Key Parameters >

Property / Parameter	Hexagonal BN (h-BN)	Cubic BN (c-BN)	Pyrolytic BN (PBN)	BN Composite Materials
Crystal Structure	Hexagonal	Cubic	High-purity hexagonal structure	Composite structure
Color	White	Black / Brown	White	Depends on base material
Density (g/cm ³)	2.1 - 2.3	3.45 - 3.50	2.0 - 2.2	2.5 - 3.5
Mohs Hardness	1 - 2	9.5	1 - 2	5 - 8
Thermal Conductivity (W/m·K)	30 - 300	1300	50 - 200	50 - 150
Thermal Expansion Coefficient ($\times 10^{-6}$ /K)	0.5 - 5.0	3.5 - 4.5	1.0 - 3.0	2.0 - 6.0
Electrical Resistivity (Ω·cm)	$>10^{14}$	$10^{10} - 10^{14}$	$>10^{14}$	$10^{12} - 10^{14}$
Dielectric Constant (1 MHz)	4.0 - 5.0	4.5 - 7.0	3.5 - 4.5	4.0 - 6.0
Maximum Service Temperature (Air)	900°C	1200°C	2000°C	800 - 1500°C
Chemical Resistance	Resistant to acids, bases, and molten metals	Resistant to acids and bases	Ultra-high purity, corrosion-resistant	Depends on base material

Popular BN Parts

High-purity crucibles and boats

Insulating tubes and thermocouple protection tubes

Heat dissipation substrates and semiconductor components

Nozzles and wear-resistant seals

Powders for lubricants and coatings

Plates for high-temperature furnaces

Applications by Industry

Electronics & Semiconductors |
Aerospace | Renewable Energy |
Chemical & Metallurgy | Machinery &
Processing | Nuclear Industry |
Advanced Manufacturing

Alumina (Al_2O_3) Ceramic

Alumina (Al_2O_3) is a high-performance ceramic material known for its outstanding mechanical strength, thermal stability, electrical insulation, and chemical resistance. With purity levels up to 99.8% and versatile product forms, alumina serves as a critical material in numerous advanced industries.

Applications by Industry

Electronics & Semiconductors | Mechanical & Industrial Engineering | Chemical & Energy | Medical & Biological | Aerospace | Refractories & High-Temperature Applications

Key Parameters >

Category	Property	Value	Unit
Basic Properties	Purity	≥99.8	%
	Density	3.92 - 3.98	g/cm^3
	Water Absorption	0	%
	Surface Roughness (Ra)	<0.1	μm
Mechanical Properties	Flexural Strength	380 - 450	MPa
	Compressive Strength	2600 - 3000	MPa
	Hardness	1600 - 1700	HV1
	Fracture Toughness	4.0 - 4.5	$\text{MPa}\cdot\text{m}^{1/2}$
	Elastic Modulus	360 - 380	GPa
Thermal Properties	Thermal Conductivity (20 °C)	28 - 32	$\text{W}/(\text{m}\cdot\text{K})$
	Thermal Expansion (20 - 800 °C)	6.0 - 7.0×10^{-6}	/K
	Max. Service Temperature (Air)	1700	°C
	Thermal Shock Resistance (ΔT)	200 - 250	°C
Electrical Properties	Volume Resistivity	>10 ¹⁴	$\Omega\cdot\text{cm}$
	Dielectric Strength	17 - 22	kV/mm
	Dielectric Constant (1 MHz)	9.5 - 9.9	-
Chemical Properties	Corrosion Rate in HCl (37%)	<0.25	$\text{mg}/\text{cm}^2/\text{day}$
	Corrosion Rate in H ₂ SO ₄ (98%)	<0.23	$\text{mg}/\text{cm}^2/\text{day}$
	Corrosion Rate in NaOH (45%)	<0.05	$\text{mg}/\text{cm}^2/\text{day}$
	Corrosion Rate in Deionized Water	0	$\text{mg}/\text{cm}^2/\text{day}$
	Corrosion Rate in Organic Solvents	0	$\text{mg}/\text{cm}^2/\text{day}$

Al_2O_3

Popular Alumina Parts

Ceramic substrates
 Vacuum suction cups
 Insulating rings and spacers
 Ceramic bearings and mechanical seals
 Wear-resistant liners and tiles
 Nozzles
 Structural Components

Key Parameters >

- High hardness of Mohs 9
- Excellent wear resistance
- Resistance to most acids, alkalis, and organic solvents
- Superior thermal stability, melting point up to 2072 °C
- High electrical resistivity and low dielectric loss
- Good thermal conductivity with low thermal expansion
- Non-toxic and non-magnetic

Aluminum Nitride (AlN) Ceramic

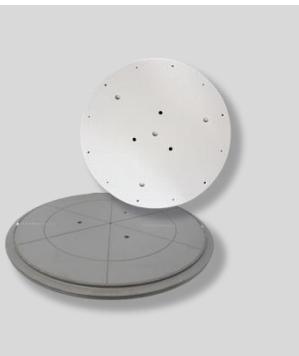
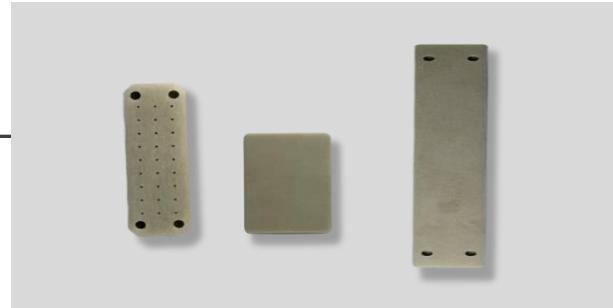
Key Properties >

- High thermal conductivity
- Low coefficient of thermal expansion
- High mechanical strength
- Excellent electrical insulation
- Good chemical stability
- Lightweight

Aluminum Nitride (AlN) is a high-performance ceramic material that combines excellent thermal conductivity, electrical insulation, mechanical strength, and chemical stability. With its unique properties, AlN has become a critical material for advanced electronics, semiconductors, and power applications.

Key Parameters >

Property Category	Specific Parameter	Unit	Typical Value / Range
Physical Properties	Density	g/cm ³	3.26
	Bulk Porosity	%	≤0.1
Thermal Properties	Thermal Conductivity (25 °C)	W/(m·K)	170 - 230
	Coefficient of Thermal Expansion (25 - 400 °C)	/K	4.4 - 4.8×10 ⁻⁶
	Maximum Operating Temperature (Air)	°C	1000
	Maximum Operating Temperature (Inert Gas)	°C	2200
Mechanical Properties	Flexural Strength	MPa	300 - 450
	Compressive Strength	MPa	2000 - 2500
	Elastic Modulus	GPa	310 - 330
	Vickers Hardness (HV0.5)	GPa	45974
	Fracture Toughness	MPa·m ^{1/2}	3.5 - 4.5
Electrical Properties	Volume Resistivity (25 °C)	Ω·cm	>10 ¹⁴
	Volume Resistivity (500 °C)	Ω·cm	>108
	Dielectric Constant (1 MHz)	-	8.5 - 8.9
	Dielectric Loss (1 MHz)	-	<0.0001
	Dielectric Strength	kV/mm	15 - 20
Chemical Properties	Acid Resistance (20% HCl, 80 °C)	mg/cm ² /day	<0.1
	Alkali Resistance (10% NaOH, 80 °C)	mg/cm ² /day	<0.2
	Oxidation Resistance (Air, 1000 °C)	mg/cm ²	<0.5 (weight gain)



AlN

Popular AlN Components

Substrates
Heat Sinks and Plates
Electrostatic Chucks for semiconductor processing
Tubes and Crucibles
Bearings and Mechanical Parts
.....

Industry Applications

Electronic packaging & semiconductors | Power electronics & new energy | Aerospace & defense
| Semiconductor manufacturing equipment |
Industrial & mechanical

Silicon Nitride (Si_3N_4) Ceramic

Silicon nitride (Si_3N_4) is a high-performance advanced ceramic material recognized for its exceptional combination of mechanical, thermal, electrical, and chemical properties. It maintains superior reliability under extreme conditions, making it an ideal choice for demanding industrial applications.

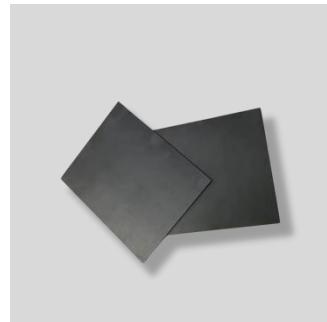
Key Parameters >

Category	Property	Value	Unit
Physical Properties	Density	3.20 - 3.30	g/cm^3
	Apparent Porosity	≤ 0.1	%
	Color	Gray/Dark Gray	-
Mechanical Properties	Flexural Strength	600 - 1200	MPa
	Compressive Strength	2500 - 3500	MPa
	Elastic Modulus	290 - 320	GPa
	Vickers Hardness	14.5 - 17.0	GPa
	Rockwell Hardness	90 - 92	-
	Fracture Toughness	6.0 - 8.0	$\text{MPa}\cdot\text{m}^{1/2}$
	Max Operating Temp (Oxidizing)	1200	$^{\circ}\text{C}$
Thermal Properties	Max Operating Temp (Inert)	1500	$^{\circ}\text{C}$
	Thermal Conductivity (20°C)	15 - 30	$\text{W}/(\text{m}\cdot\text{K})$
	Thermal Expansion ($20 - 1000^{\circ}\text{C}$)	3.2×10^{-6}	/K
	Thermal Shock Resistance (ΔT)	500 - 800	$^{\circ}\text{C}$
	Volume Resistivity (20°C)	$> 10^{12}$	$\Omega\cdot\text{cm}$
Electrical Properties	Volume Resistivity (500°C)	$10^6 - 10^8$	$\Omega\cdot\text{cm}$
	Dielectric Constant (1 MHz)	8.0 - 9.0	-
	Dielectric Loss (1 MHz)	< 0.001	-
	HCl (20%)	Excellent	$\leq 100^{\circ}\text{C}$
Chemical Stability	H_2SO_4 (50%)	Excellent	$\leq 100^{\circ}\text{C}$
	HF	Not resistant	Any conc.
	NaOH (30%)	Good	$\leq 80^{\circ}\text{C}$
	Molten Aluminum	Excellent	$\leq 800^{\circ}\text{C}$
	Molten Copper	Poor	-

Si₃N₄

Popular Si₃N₄ Parts

High-Performance Bearing Balls
 Wear-Resistant Nozzles
 Durable Plungers
 Thermal-Conductive Substrates
 High-Temperature Crucibles
 Precision Locating Pins


Industries & Applications

Mechanical engineering | Automotive and new energy | Semiconductor and electronics | Chemical and metallurgical | Aerospace

Key Properties >


- Low density and high strength
- Excellent hardness and wear resistance
- High fracture toughness and bending strength
- High temperature capability up to 1500°C in inert atmosphere
- Low thermal expansion and good thermal conductivity
- Excellent electrical insulation with stable dielectric constant
- Strong resistance to acids, alkalis, and molten metals (except HF)
- Low friction coefficient with self-lubricating behavior

Our Strengths & Reliability

Advanced Manufacturing Facilities

Precision CNC Machining

High-accuracy ceramic shaping and finishing with advanced CNC equipment.

High-Temperature Kilns

Specialized furnaces for reliable sintering and thermal processing.

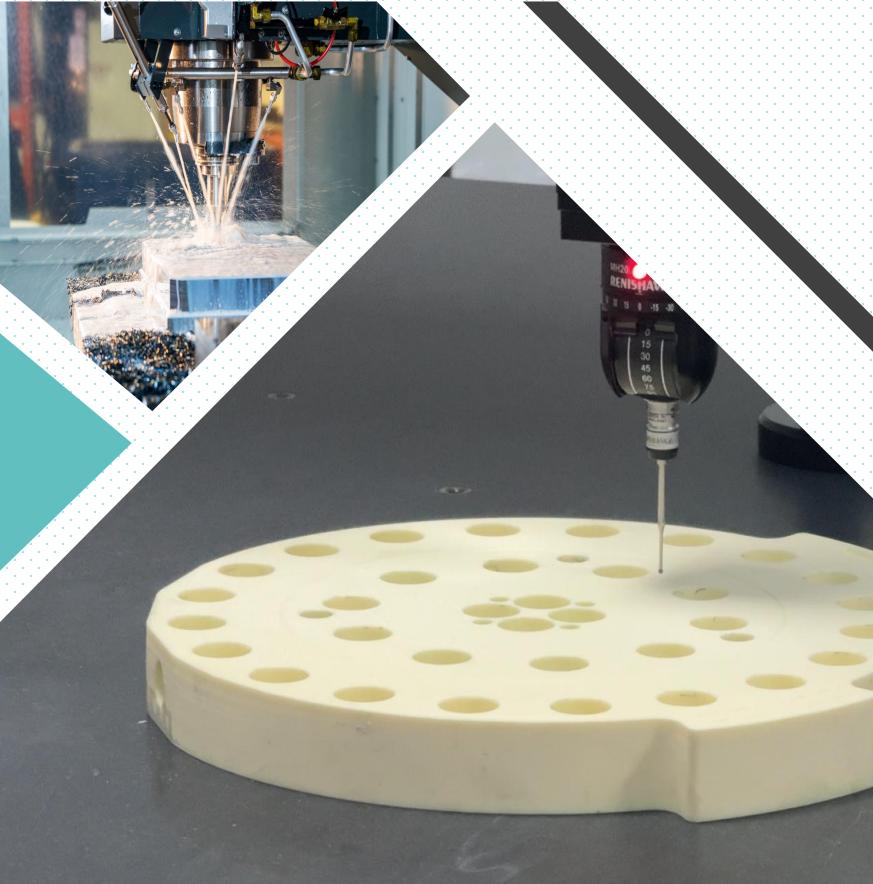
Automated Production Lines

Streamlined processes ensuring efficiency and consistent product quality.

Strict Quality Control Stations

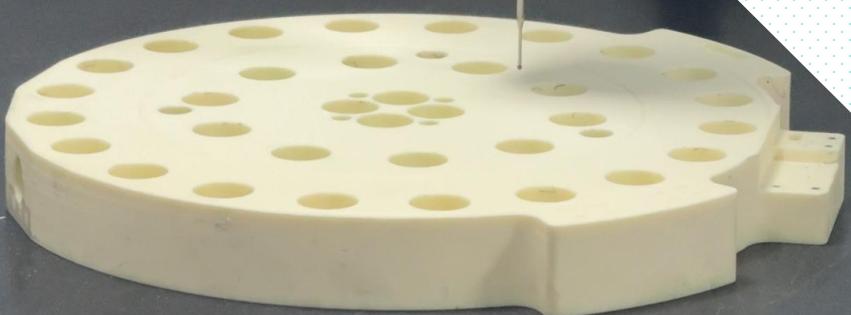
Dedicated areas for dimensional, strength, and performance testing.

Our Strengths & Reliability


Certifications

Certified with ISO and industry-specific standards, ensuring consistent quality, process control, and compliance with global requirements.

Global Exhibitions


Active participation in worldwide trade shows, meeting customers face-to-face.

NKM

— ADVANCED CERAMICS —

Qingdao Newthink New Materials Co., Ltd.

Add: NO.448, Jiangshan South Road, Qingdao City, China

Email: info@nkmceramic.com

<https://nkmceramic.com>